Polyethylene Glycol Addition as Non-ionic Surfactant in Water-based Carbon Microfluid for Quench Medium in Heat Treatment Process

Author:

Rakhman D.,Putra W. N.,Ramadhani C. A.,Harjanto S.

Abstract

Abstract The mechanical properties of a material depend on the quenching process. In this process, there is a rapid cooling from elevated to room temperature in a short time by using a quench medium. Therefore, the phase transformation from austenite to martensite occurs. The common medium used in the quenching process is water, oil, polymer, and gas. Nanofluids are started to be used as a quench medium because they offer better thermal conductivity compared with the conventional medium. Selection of carbon-based nanofluids as a quenching process medium aims to obtain high thermal conductivity values and controllable cooling rates. Thereby, the expected microstructure of the material could be relatively easier to form. In this paper, carbon particles were obtained using a top-down method with a planetary ball mill for 15 hours at 500 rpm. Based on the electron microscope and spectroscopy results, the particle dimension was average at 15 μm after milling, and the carbon purity of the powder used in this research was 99%. Carbon particles at 0.1%, 0.3%, and 0.5% with variation of non-ionic surfactant Polyethylene Glycol of 1%, 2%, 3%, 4% and 5% respectively was used in this research. AISI 1045 or JIS S45C carbon steel was used as a steel sample, and austenized at 1000°C for 1 hour and then quenched in the microfluid. The hardness obtained was up to 811 HV for the sample quenched in 0.5% carbon and 1% Polyethylene Glycol. The improvement was more than 100 HV, compared with the sample quenched in distilled water, which had a hardness only 666 HV.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3