Cracking Mechanism in E-Beam 3D-Printed DZ125 Ni-based Superalloys

Author:

Wang Z,Lin Y,Zhao Y,Shangguan F,Chen K

Abstract

Abstract Directionally solidified Ni-based superalloys are extensively employed to manufacture turbine blades due to their outstanding high-temperature mechanical properties. To reduce overall costs, repairing techniques are highly demanded to restored the shape and properties of damaged turbine blades. In this study, as a surrogate for the repair process, DZ125 Ni-based superalloys were grown epitaxially with the electron beam powder bed fusion 3D-printing method on a base metal with the same chemical composition. Cracks are detected within the printed part, always along the high-angle grain boundaries and roughly parallel to the building direction. The cracks are identified to be liquation cracks, and the thermal cycling effects are proved to play an important role in crack initiation and propagation. The knowledge gained from this work provides valuable insights towards 3D-printing strategy development to obtain crack-free directionally solidified superalloys.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3