Comparative Analysis of Mean Variance Efficient Frontier and Resampled Efficient Frontier For Optimal Stock Portfolio Formation

Author:

Siswanah Emy

Abstract

Abstract One way to form an optimal stock portfolio is to use the mean-variance efficient frontier (MVEF) method. However, the MVEF method is susceptible to changes in input. An optimal stock portfolio formation method has been developed to overcome this problem, known as the Resampled Efficient Frontier (REF) method. The REF method is a refinement of the MVEF method. REF is done by generating data repeatedly using the Montecarlo simulation. The parameters needed to form a stock portfolio using REF are the average input return μ and the covariance variance matrix Σ. The calculation results show that the weight of the REF portfolio is not negative (there is no short selling strategy). The Sharpe ratio of the REF portfolio is also higher than the MVEF. A larger Sharpe ratio indicates that the REF portfolio has a better performance compared to MVEF. However, empirically based on a case study simulation, the MVEF method experienced a smaller loss compared to the REF method.

Publisher

IOP Publishing

Subject

General Medicine

Reference26 articles.

1. Portfolio Selection;Markowitz;Journal of Finance,1952

2. The Markowitz Optimization Enigma: Is Optimization Optimal?;Michaud;Financial Analysts Journal,1989

3. Mean-Variance, Mean-VaR, and Mean-CVaR Models for Portfolio Selection with Background Risk;Guo;Risk Management,2018

4. Robust Markowitz Mean-Variance Portfolio Selection Under Ambiguous Covariance Matrix;Ismail;Mathematical Finance,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3