An Efficient Deep Learning Approach for Brain Tumor Segmentation Using CNN

Author:

Kumar M. Jogendra,Sai N. Raghavendra,Chowdary Ch. Smitha

Abstract

Abstract The focus on this endeavor may be to composed totally altered tumor division system utilizing convolutional neural networks (CNN). Tumors could show up any place in the mind and basically such a size, shape, and multifaceted nature. These causes drive the use of a versatile, high breaking point profound NN. This may be a system of the work completed in this view with a push to portray in procedure utilized. The BraTS cerebrum tumor division challenge dataset, which contains MRI ranges of mind for higher than 200 patients is utilized in this assessment. A fix wise division procedure will be utilized and 98% exactness on test set of patches. An assortment of evaluations have completed around the NN significance utilized the various models to set up the best designing for this errand. The CNN will be utilized to locate the correct region of profound NN and gliomas CNN have used to locate the terrible zone. The Deep NN is to discover the shrouded units in gliomas.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3