Author:
Sharma Moolchand,Jain Samyak,Mittal Sidhant,Sheikh Tariq Hussain
Abstract
Abstract
Air quality index (AQI) is a number used by government agencies to communicate to the public how polluted the air currently. It is based on several factors like SO2, NO2, O3, RSPM/PM10, and PM2.5. Several methods were developed in the past by various researchers/environmental agencies for the determination of AQI. Still, there is no universally accepted method that exists, which is appropriate for all situations. We have developed a prediction model that is confined to standard classification or regression models. These prediction models have ignored the co-relation between sub-models in different time slots. The paper focusses on a refined model for inferring air pollutants based on historical and current meteorological datasets. Also, the model is designed to forecast AQI for the coming months, quarters or years where the emphasis is on how to improve its accuracy and performance. The algorithms are used on Air Pollution Geocodes Dataset (2016-2018), and results calculated for 196 cities of India on various classifiers. Accuracy of 94%-96% achieved from Linear Robust Regression, which increases to 97.92% after application of KNN and 97.91% after SVM and 97.47 after 5th epoch of ANN. Decision Tree Classifier has given the best accuracy of 99.7%, which increases by 0.02% on the application of the Random Forest Classifier. Forecasting achieved by Moving Average Smoothing using R-ARIMA, which offers daily values for the coming 45days or monthly data of AQI for the next year.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献