Forecasting And Prediction Of Air Pollutants Concentrates Using Machine Learning Techniques: The Case Of India

Author:

Sharma Moolchand,Jain Samyak,Mittal Sidhant,Sheikh Tariq Hussain

Abstract

Abstract Air quality index (AQI) is a number used by government agencies to communicate to the public how polluted the air currently. It is based on several factors like SO2, NO2, O3, RSPM/PM10, and PM2.5. Several methods were developed in the past by various researchers/environmental agencies for the determination of AQI. Still, there is no universally accepted method that exists, which is appropriate for all situations. We have developed a prediction model that is confined to standard classification or regression models. These prediction models have ignored the co-relation between sub-models in different time slots. The paper focusses on a refined model for inferring air pollutants based on historical and current meteorological datasets. Also, the model is designed to forecast AQI for the coming months, quarters or years where the emphasis is on how to improve its accuracy and performance. The algorithms are used on Air Pollution Geocodes Dataset (2016-2018), and results calculated for 196 cities of India on various classifiers. Accuracy of 94%-96% achieved from Linear Robust Regression, which increases to 97.92% after application of KNN and 97.91% after SVM and 97.47 after 5th epoch of ANN. Decision Tree Classifier has given the best accuracy of 99.7%, which increases by 0.02% on the application of the Random Forest Classifier. Forecasting achieved by Moving Average Smoothing using R-ARIMA, which offers daily values for the coming 45days or monthly data of AQI for the next year.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Input Bi-LSTM Autoencoder Model with Wavelet Transform for Air Quality Prediction;2024 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2024-08-15

2. IoT-based monitoring system and air quality prediction using machine learning for a healthy environment in Cameroon;Environmental Monitoring and Assessment;2024-06-15

3. Investigation of Air Effluence Using IoT and Machine Learning;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023-12-20

4. Forecasting the impact of meteorological parameters on air pollutants in Andhra Pradesh using machine learning techniques;Environmental Quality Management;2023-05-19

5. Modeling of COVID‐19 death rate using various air pollutants: A multiple linear regression approach;Environmental Quality Management;2023-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3