Effect of coherent edge-localized mode on transition to high-performance hybrid scenarios in KSTAR

Author:

Lee YounghoORCID,Kim S.K.ORCID,Kim J.W.ORCID,Kim B.,Park M.S.,Kwon J.M.,Choi M.J.ORCID,Hahn S.H.ORCID,Lee M.W.,Yang S.M.ORCID,Hong S.C.,Lee C.Y.ORCID,Park S.J.,Byun C.S.,Kim H.-S.ORCID,Chung J.,Na Yong-SuORCID

Abstract

Abstract This paper deals with one of the origins and trigger mechanisms responsible for the observed performance enhancements in the hybrid scenario experiments conducted in Korea Superconducting Tokamak Advanced Research (KSTAR). The major contribution to the performance improvement comes from a broader and higher pedestal formation. The increase of fast ion pressure due to a plasma density decrease also contributes substantially to the global beta. Although the reduced core plasma volume resulting from the pedestal expansion has a negative effect on the core thermal energy, a considerable confinement improvement observed in the inner core region limits the degradation. The one significant characteristic of high-performance discharges is the presence of Coherent Edge-localized Mode (CEM) activity. CEM is triggered during the pedestal recovery phase between typical ELM crashes and has been found to be related to the increase of particle and heat transport. It appears to underlie two commonly observed phenomena in high-performance hybrid scenario discharges in KSTAR; pedestal broadening and continuous density decrease. Despite the associated transport increase, CEM activities can induce performance enhancement. With the pedestal broadening, ELM crashes become delayed and weakened, which, in turn, allows for a higher pedestal. Moreover, the density decrease directly increases fast ion pressure by extending the beam-slowing-down time. The linear gyrokinetic analysis reveals that the increase of fast ions could initiate positive feedback loops, leading to the stabilization of Ion Temperature Gradient mode in the inner core region.

Funder

National Research Foundation of Korea

Korea Institute of Fusion Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3