Abstract
Abstract
The pedestal turbulence intensity required to convert the thin, laminar H-mode scrape-off layer (SOL) to a broad turbulent SOL is calculated using the theory of turbulence spreading. A lower bound on the pedestal turbulence level to exceed the neoclassical heuristic drift (HD) width is derived. A reduced model of SOL turbulence spreading is used to determine the SOL width as a function of intensity flux from the pedestal to the SOL. The cross-over value for exceeding the HD model width is then calculated. We determine the pedestal turbulence levels—and the critical scalings thereof—required to achieve this level of broadening. Both drift wave and ballooning mode turbulence are considered. A sensitivity analysis reveals that the key competition is that between spreading and linear E × B shear damping. The required pedestal turbulence levels scale with ρ/R.
Funder
U.S. Department of Energy
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献