Physics and technology considerations for the deuterium–tritium fuel cycle and conditions for tritium fuel self sufficiency

Author:

Abdou Mohamed,Riva Marco,Ying Alice,Day Christian,Loarte Alberto,Baylor L.R.,Humrickhouse Paul,Fuerst Thomas F.,Cho Seungyon

Abstract

Abstract The tritium aspects of the DT fuel cycle embody some of the most challenging feasibility and attractiveness issues in the development of fusion systems. The review and analyses in this paper provide important information to understand and quantify these challenges and to define the phase space of plasma physics and fusion technology parameters and features that must guide a serious R&D in the world fusion program. We focus in particular on components, issues and R&D necessary to satisfy three ‘principal requirements’: (1) achieving tritium self-sufficiency within the fusion system, (2) providing a tritium inventory for the initial start-up of a fusion facility, and (3) managing the safety and biological hazards of tritium. A primary conclusion is that the physics and technology state-of-the-art will not enable DEMO and future power plants to satisfy these principal requirements. We quantify goals and define specific areas and ideas for physics and technology R&D to meet these requirements. A powerful fuel cycle dynamics model was developed to calculate time-dependent tritium inventories and flow rates in all parts and components of the fuel cycle for different ranges of parameters and physics and technology conditions. Dynamics modeling analyses show that the key parameters affecting tritium inventories, tritium start-up inventory, and tritium self-sufficiency are the tritium burn fraction in the plasma (f b), fueling efficiency (η f), processing time of plasma exhaust in the inner fuel cycle (t p), reactor availability factor (AF), reserve time (t r) which determines the reserve tritium inventory needed in the storage system in order to keep the plant operational for time t r in case of any malfunction of any part of the tritium processing system, and the doubling time (t d). Results show that η f f b > 2% and processing time of 1–4 h are required to achieve tritium self-sufficiency with reasonable confidence. For η f f b = 2% and processing time of 4 h, the tritium start-up inventory required for a 3 GW fusion reactor is ∼11 kg, while it is <5 kg if η f f b = 5% and the processing time is 1 h. To achieve these stringent requirements, a serious R&D program in physics and technology is necessary. The EU-DEMO direct internal recycling concept that carries fuel directly from the plasma exhaust gas to the fueling systems without going through the isotope separation system reduces the overall processing time and tritium inventories and has positive effects on the required tritium breeding ratio (TBRR). A significant finding is the strong dependence of tritium self-sufficiency on the reactor availability factor. Simulations show that tritium self-sufficiency is: impossible if AF < 10% for any η f f b, possible if AF > 30% and 1% ⩽ η f f b ⩽ 2%, and achievable with reasonable confidence if AF > 50% and η f f b > 2%. These results are of particular concern in light of the low availability factor predicted for the near-term plasma-based experimental facilities (e.g. FNSF, VNS, CTF), and can have repercussions on tritium economy in DEMO reactors as well, unless significant advancements in RAMI are made. There is a linear dependency between the tritium start-up inventory and the fusion power. The required tritium start-up inventory for a fusion facility of 100 MW fusion power is as small as 1 kg. Since fusion power plants will have large powers for better economics, it is important to maintain a ‘reserve’ tritium inventory in the tritium storage system to continue to fuel the plasma and avoid plant shutdown in case of malfunctions of some parts of the tritium processing lines. But our results show that a reserve time as short as 24 h leads to unacceptable reserve and start-up inventory requirements. Therefore, high reliability and fast maintainability of all components in the fuel cycle are necessary in order to avoid the need for storing reserve tritium inventory sufficient for continued fusion facility operation for more than a few hours. The physics aspects of plasma fueling, tritium burn fraction, and particle and power exhaust are highly interrelated and complex, and predictions for DEMO and power reactors are highly uncertain because of lack of experiments with burning plasma. Fueling by pellet injection on the high field side of tokamak has evolved to be the preferred method to fuel a burning plasma. Extrapolation from the DIII-D penetration scaling shows fueling efficiency expected in DEMO to be <25%, but such extrapolations are highly uncertain. The fueling efficiency of gas in a reactor relevant regime is expected to be extremely poor and not very useful for getting tritium into the core plasma efficiently. Gas fueling will nonetheless be useful for feedback control of the divertor operating parameters. Extensive modeling has been carried out to predict burn fraction, fueling requirements, and fueling efficiency for ITER, DEMO, and beyond. The fueling rate required to operate Q = 10 ITER plasmas in order to provide the required core fueling, helium exhaust and radiative divertor plasma conditions for acceptable divertor power loads was calculated. If this fueling is performed with a 50–50 DT mix, the tritium burn fraction in ITER would be ∼0.36%, which is too low to satisfy the self-sufficiency conditions derived from the dynamics modeling for fusion reactors. Extrapolation to DEMO using this approach would also yield similarly low burn fraction. Extensive analysis presented shows that specific features of edge neutral dynamics in ITER and fusion reactors, which are different from present experiments, open possibilities for optimization of tritium fueling and thus to improve the burn fraction. Using only tritium in pellet fueling of the plasma core, and only deuterium for edge density, divertor power load and ELM control results in significant increase of the burn fraction to 1.8–3.6%. These estimates are performed with physics models whose results cannot be fully validated for ITER and DEMO plasma conditions since these cannot be achieved in present tokamak experiments. Thus, several uncertainties remain regarding particle transport and scenario requirements in ITER and DEMO. The safety standard requirements for protection of the public and release guidelines for tritium have been reviewed. General safety approaches including minimizing tritium inventories, reducing tritium permeation through materials, and decontaminating material for waste disposal have been suggested.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference194 articles.

1. Deuterium–tritium fuel self-sufficiency in fusion reactors;Abdou;Fusion Technol.,1986

2. A new approach for assessing the required tritium breeding ratio and startup inventory in future fusion reactors;Kuan;Fusion Technol.,1999

3. Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle;Sawan;Fusion Eng. Des.,2006

4. Blanket/first wall challenges and required R&D on the pathway to DEMO;Abdou;Fusion Eng. Des.,2015

5. Predictive methods and analysis of time dependent tritium flow rates and inventories in fusion systems;Riva,2020

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3