Exploring the physics of a high-performance H-mode scenario with small ELMs at low collisionality in JET with Be/W wall

Author:

de la Luna E.ORCID,Garcia J.ORCID,Sertoli M.,Lomas P.,Mazzi S.ORCID,Štancar Ž.ORCID,Dunne M.ORCID,Aiba N.ORCID,Silburn S.ORCID,Faitsch M.ORCID,Szepesi G.,Auriemma F.,Balboa I.,Frassinetti L.ORCID,Garzotti L.ORCID,Menmuir S.,Refy D.,Rimini F.,Solano E.R.ORCID,Sozzi C.ORCID,Vecsei M.,

Abstract

Abstract A new H-mode regime at low density and low edge safety factor (q 95 = 3.2, with I p = 3 MA) that combines high energy confinement, stationary conditions for density and radiation and small Edge Localized Modes (ELMs) have been found in JET with Be/W wall. Such a regime is achieved by operating without external gas puffing, leading to a decrease in the edge density and a substantial increase in rotation and ion temperature in both the pedestal and the core region. Transport modelling shows a reduction of the turbulence, which starts in the pedestal region and extends into the plasma core, and outward impurity convection, consistent with the improved energy confinement and the lack of W accumulation observed in those conditions. In addition, large type I ELMs, typically found in gas-fuelled plasmas, are replaced by smaller and more frequent ELMs, whose appearance is correlated with a substantial reduction of the pedestal density and its gradient. Pedestals in this operating regime are stable to peeling–ballooning modes, consistent with the lack of large ELMs. This is in contrast to results in unfuelled JET-C plasmas that typically operated at higher pedestal densities and developed low frequency, large type I ELMs, thus pointing to the low density as one of the critical parameters for accessing this small ELMs regime in JET. This small ELMs regime exhibits the same low pedestal collisionality ( ν e , ped 0.1 ) expected in ITER and operates at low q 95, thus making it different from other small ELMs regimes that are typically obtained at higher q 95 and higher pedestal collisionality. These features make this newly developed H-mode regime in JET with Be/W wall a valuable tool for exploring the underlying transport, the different mechanisms of turbulence stabilization, as well as the physics associated with the appearance of small ELMs in high-temperature plasmas at ITER relevant pedestal collisionality.

Funder

Ministerio de Ciencia e Innovación

Euratom Research and Training Programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3