Simulation of Alfvén eigenmodes destabilized by energetic electrons in tokamak plasmas

Author:

Wang JialeiORCID,Todo YasushiORCID,Wang HaoORCID,Wang Zheng-Xiong

Abstract

Abstract Alfvén eigenmodes (AEs) driven by energetic electrons were investigated via hybrid simulations of an MHD fluid interacting with energetic electrons. The investigation focused on AEs with the toroidal number n = 4. Both energetic electrons with centrally peaked beta profile and off-axis peaked profile are considered. For the centrally peaked energetic electron beta profile case, a toroidal Alfvén eigenmode (TAE) propagating in the electron diamagnetic drift direction is found. The mode is mainly driven by deeply trapped energetic electrons. It is also found that a few passing energetic electrons spatially localized around rational surfaces can resonate with the mode. For the off-axis peaked energetic electron beta profile case, an AE propagating in the ion diamagnetic drift direction is found when a q p r o f i l e with weak magnetic shear is adopted. The destabilized mode is an elliptical-Alfvén-eigenmode-type (EAE-type) mode which has a spatial profile peaking at the rational surface and a frequency close to the second Alfvén frequency gap. It is found that passing energetic electrons and barely trapped energetic electrons are responsible for this EAE-type mode destabilization. The saturation levels are compared for a TAE with the same linear growth rate among energetic electron driven mode and energetic ion driven mode with isotropic and anisotropic velocity space distributions. The saturation level of TAE driven by trapped energetic electrons is comparable to that driven by energetic electrons with isotropic velocity space distribution where the contribution of trapped particles is dominant. It is found that the trapped energetic ion driven TAE has a larger saturation level than the passing energetic ion driven TAE, which indicates the difference in particle trapping by the TAE between trapped and passing energetic ions.

Funder

National Key R&D Program of China

NIFS Collaboration Research program

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3