Power exhaust by core radiation at COMPASS tokamak

Author:

Komm M.ORCID,Mancini D.,Morbey M.,Cavalier J.,Adamek J.ORCID,Bernert M.,Bilkova P.,Bohm P.,Brida D.ORCID,Février O.ORCID,Henderson S.ORCID,Hron M.,Jerab M.,Imrisek M.,Kripner L.,Naydenkova D.,Panek R.,Sos M.,Vondracek P.,EUROfusion MST1 team the

Abstract

Abstract Substantial power dissipation in the edge plasma is required for the safe operation of ITER and next-step fusion reactors, otherwise unmitigated heat fluxes at the divertor plasma-facing components (PFCs) would easily exceed their material limits. Traditionally, such heat flux mitigation is linked to the regime of detachment, which is characterised by a significant pressure gradient between upstream and downstream scrape-off layer (SOL). However, the physics phenomena responsible for power dissipation and pressure loss are distinctly different, especially when the power dissipation is achieved by impurity seeding. In principle, it is possible to achieve substantial mitigation of the heat fluxes while maintaining conservation of the pressure along the open field lines in the SOL. This regime can be accessed by injection of medium- or high-Z impurities, which mostly radiate inside the last closed flux surface. The critical question related to such an approach is the effect on confinement and perspective fusion power generation in future thermonuclear reactors. In this work, we report on experiments at COMPASS tokamak, where neon and argon impurities were injected in ohmic or NBI-heated low confinement plasmas. With appropriate seeding waveform, stable scenarios were achieved, avoiding the radiative collapse of plasmas. Significant reduction of heat fluxes at the outer target was observed, with heat flux pattern similar to the one previously achieved by nitrogen seeding. The reduction of downstream pressure was, however, accompanied by an equal reduction of upstream pressure, indicating that the power dissipation occurred inside the separatrix. Indeed, the impurity cooling is causing a significant drop of edge temperature; however, the effect in the plasma centre is much less pronounced.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3