Toward full simulations for a liquid metal blanket: part 2. Computations of MHD flows with volumetric heating for a PbLi blanket prototype at Ha ∼ 104 and Gr ∼ 1012

Author:

Chen L.,Smolentsev S.,Ni M.-J.ORCID

Abstract

Abstract On the pathway toward full simulations for a liquid metal (LM) blanket, this part 2 extends a previous study of purely magnetohydrodynamic (MHD) flows in a DCLL blanket in reference Chen et al (2020 Nucl. Fusion 60 076003) to more general conditions when the MHD flow is coupled with heat transfer. The simulated prototypic blanket module includes all components of a real LM blanket system, such as supply ducts, inlet and outlet manifolds, multiple poloidal ducts and a U-turn zone. Volumetric heating generated by fusion neutrons is added to simulate thermal effects in the flowing lead–lithium (PbLi) breeder. The MHD flow equations and the energy equation are solved with a DNS-type finite-volume code ‘MHD-UCAS’ on a very fine mesh of 470 × 106 cells. The applied magnetic field is 5 T (Hartmann number Ha ∼ 104), the PbLi velocity in the poloidal ducts is 10 cm s−1 (Reynolds number Re ∼ 105), whereas the maximum volumetric heating is 30 MW m−3 (Grashof number Gr ∼ 1012). Four cases have been simulated, including forced- and mixed-convection flows, and either an electrically conducting or insulating blanket structure. Various comparisons are made between the four computed cases and also against the purely MHD flows computed earlier in reference Chen et al (2020 Nucl. Fusion 60 076003) with regards to the (1) MHD pressure drop, (2) flow balancing, (3) temperature field, (4) flows in particular blanket components, and (5) 3D and turbulent flow effects. The strongest buoyancy effects were found in the poloidal ducts. In the electrically non-conducting blanket, the buoyancy forces lead to significant modifications of the flow structure, such as formation of reverse flows, whereas their effect on the MHD pressure drop is relatively small. In the electrically conducting blanket case, the buoyancy effects on the flow and MHD pressure drop are almost negligible.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3