Conceptual design of solid-type Pb x Li y eutectic alloy breeding blanket for CFETR

Author:

Jiang K.,Wu Q.,Chen L.,Liu S.

Abstract

Abstract As a key component of the Chinese Fusion Engineering and Test Reactor (CFETR), the blanket is responsible for tritium breeding, neutron shielding and energy conversion. Blankets can be classified into solid and liquidaccording to the form of tritium breeder. Among them, the solid blanket utilizes the pebble beds as both the tritium breeder and neutron multiplier, and it has been a popular scheme due to its advantages, such as good material compatibility and non-magnetohydrodynamic effects. However, it usually adopts beryllium or an alloy (i.e. Be and Be12Ti) for multiplying neutrons, causing a very high cost of the solid blanket due to the scarcity of natural resources of beryllium, and this hinders its development. In this paper, a novel solid blanket utilizing a PbLi eutectic alloy was proposed to make up the above deficiency. Pb83Li17 is usually applied in a liquid blanket due to its lowmelting point. However, this kind of alloy can have a higher melting point by adjusting the atomic ratio of Pb/Li, and thus it can be used in the solid blanket both for the tritium breeder and neutron multiplier. Based on the blanket modular design of CFETR, the optimization of the radial layouts, the atomic ratio of Pb/Li and the packed structure of the pebble beds are studied through neutronic and thermal hydraulic analysis. The results indicate that the solid-type Pb x Li y can satisfy the requirement of tritium self-sufficiency, and the global tritium breeding ratio is larger than 1.0. In addition, the cooling system design can retain the maximum temperature of Pb x Li y at a lower level without melting. Overall, this kind of solid-type Pb x Li y blanket is feasible from the perspective of neutronic and thermal hydraulics, and it avoids using beryllium; thus, the cost is highly reduced.

Funder

Science Foundation of ASIPP

Comprehensive Research Facility for Fusion Technology (CRAFT) Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3