Cross-machine comparison of runaway electron generation during tokamak start-up for extrapolation to ITER

Author:

de Vries P.C.ORCID,Lee Y.,Gribov Y.,Mineev A.B.,Na Y.S.,Granetz R.,Stein-Lubrano B.,Reux C.ORCID,Moreau Ph.,Kiptily V.ORCID,Esposito B.ORCID,Battaglia D.J.ORCID,Martin-Solis J.R.

Abstract

AbstractA cross-machine comparison of global parameters that determine the runaway electron (RE) generation and loss process during tokamak start-up was carried out with the aim to extrapolate these to ITER. The study found that all considered discharges, also those that do not show signs of RE, are non-thermal at the start, i.e. have a streaming parameter larger than 0.1. During the current ramp-up the electric field,E, remains above the critical value,Ec, that allows RE in the plasma. The distinction to be made is not if RE can form but, if sufficient RE can form fast enough such that they are detected or start to dominate the dynamics of the tokamak discharge. The dynamics of the value ofE, density and temperature during tokamak are key to the formation of RE. It was found that larger devices operate withEcloser toEc, due to their higher temperatures, hence the RE generation is relatively slower. The slower time scales for the formation of RE, estimated to be of the order of 100s of ms in ITER simplifies the development of avoidance schemes. The RE confinement time is also an important determinant of the entire process and is found to increase with the device size. The study also revealed that drift orbit losses, a mechanism often attributed as the main RE loss mechanism during the early tokamak discharge, are actually more difficult to achieve. RE losses might be more likely attributed to RE diffusion due to magnetic turbulence.

Funder

Research Councils UK

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPARC x-ray diagnostics: Technical and functional overview;Review of Scientific Instruments;2024-09-01

2. NSTX-U research advancing the physics of spherical tokamaks;Nuclear Fusion;2024-08-15

3. Development of the prototype for the SPARC hard X-ray monitor;Review of Scientific Instruments;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3