Analyses and optimization of the CFETR power conversion system with a new supercritical CO2 Brayton cycle

Author:

Zhao Pinghui,Chen Zhansheng,Jin Yixuan,Wan Teng,Wang Xiaohu,Liu KeORCID,Lei MingzhunORCID,Li Yuanjie,Peng ChanghongORCID

Abstract

Abstract In this paper, the Chinese Fusion Engineering Testing Reactor (CFETR) power conversion system, with a supercritical CO2 (SCO2) Brayton cycle, is designed, analyzed and optimized. Considering the pulse operation of the reactor, a heat storage loop with high temperature molten salt and low temperature concrete is introduced. Based on the parameters of the first cooling loop, the CFETR power conversion loop is designed and studied. A new SCO2 Brayton cycle for the CFETR dual heat sources, blanket and divertor, is developed and optimized using a genetic algorithm. Compared to other simple and recompression cycles, it is shown that the new SCO2 Brayton cycle combines maximum thermal efficiency with simplicity. Exergy analyses are carried out and show that the exergy destruction rates of turbine and heat exchangers between different loops are the largest due to the large turbine power and the large temperature difference. The exergoeconomic analyses show that the fusion reactor accounts for the main cost, which is the key to the economy of fusion power generation. The following sensitivity analyses show that the hot molten salt temperature has a major influence on the system performance. Finally, several multi-criteria optimization algorithms are introduced to simultaneously optimize the three fitness functions, the cycle thermal efficiency, the system exergy efficiency and the total system product unit cost. It is found that the maximum thermal efficiency, the maximum exergy efficiency and the lowest total system product unit cost can be obtained almost simultaneously for the new CFETR power conversion system, and this optimal operation scheme is presented.

Funder

the Collaborative Innovation Program of Hefei Science Center, CAS

the National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3