Improved performance of electron cyclotron resonance heating by perpendicular injection in the Large Helical Device

Author:

Tsujimura T.I.ORCID,Yanai R.,Mizuno Y.,Tanaka K.ORCID,Yoshimura Y.ORCID,Tokuzawa T.,Nishiura M.,Sakamoto R.ORCID,Motojima G.ORCID,Kubo S.ORCID,Shimozuma T.ORCID,Igami H.,Takahashi H.,Yoshinuma M.,Ohshima S.ORCID

Abstract

Abstract A real-time interlock system for power injection in electron cyclotron resonance heating (ECRH) was developed to be applied to Large Helical Device (LHD) plasma. This system enabled perpendicular injection, thus improving the performance of ECRH more than has ever been achieved before in LHD. Perpendicular propagation of the electron cyclotron wave at 77 GHz became more insensitive to the effect of refraction in comparison to the conventional oblique propagation. The achieved central electron temperature in the case of perpendicular injection was approximately 2 keV higher than that in the case of standard oblique injection for a central electron density of 1 × 1019 m−3 by 1 MW injection. With such improved performance of ECRH, high-density ECRH plasma of 8 × 1019 m−3 was successfully sustained after the injection of multiple hydrogen ice pellets for the first time in LHD.

Funder

National Institute for Fusion Science

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference36 articles.

1. Extension of high T e regime with upgraded electron cyclotron resonance heating system in the Large Helical Device;Takahashi;Phys. Plasmas,2014

2. Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD;Shimozuma;Nucl. Fusion,2015

3. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments;Tsujimura;Nucl. Fusion,2015

4. Impact of the LHD peripheral region and the magnetic axis shift on optimal on-axis ECRH injection for high-electron-temperature plasmas;Tsujimura,2016

5. Automatically processing physical data from LHD experiments;Emoto;Fusion Eng. Des.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3