High fusion performance in Super H-mode experiments on Alcator C-Mod and DIII-D

Author:

Snyder P.B.ORCID,Hughes J.W.ORCID,Osborne T.H.,Paz-Soldan C.ORCID,Solomon W.M.,Knolker M.ORCID,Eldon D.ORCID,Evans T.ORCID,Golfinopoulos T.,Grierson B.A.ORCID,Groebner R.J.,Hubbard A.E.,Kolemen E.,LaBombard B.ORCID,Laggner F.M.ORCID,Meneghini O.,Mordijck S.,Petrie T.,Scott S.,Wang H.Q.,Wilson H.R.ORCID,Zhu Y.B.

Abstract

Abstract The ‘Super H-Mode’ regime is predicted to enable pedestal height and fusion performance substantially higher than standard H-Mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that is predicted by the EPED model to occur in strongly shaped plasmas above a critical pedestal density. Experiments on Alcator C-Mod and DIII-D have achieved access to the Super H-Mode (and Near Super H) regime, and obtained very high pedestal pressure, including the highest achieved on a tokamak (pped ~ 80 kPa) in C-Mod experiments operating near the ITER magnetic field. DIII-D Super H experiments have demonstrated strong performance, including the highest stored energy in the present configuration of DIII-D (W ~ 2.2–3.2 MJ), while utilizing only about half of the available heating power (P heat ~ 7–12 MW). These DIII-D experiments have obtained the highest value of peak fusion gain, Q DT,equiv ~ 0.5, achieved on a medium scale (R  <  2 m) tokamak. Sustained high performance operation (β N ~ 2.9, H98 ~ 1.6) has been achieved utilizing n  =  3 magnetic perturbations for density and impurity control. Pedestal and global confinement has been maintained in the presence of deuterium and nitrogen gas puffing, which enables a more radiative divertor condition. A pair of simple performance metrics is developed to assess and compare regimes. Super H-Mode access is predicted for ITER and expected, based on both theoretical prediction and observed normalized performance, to allow ITER to achieve its goals (Q  =  10) at I p  <  15 MA, and to potentially enable more compact, cost effective pilot plant and reactor designs.

Funder

US Department of Energy, Office of Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3