Abstract
Abstract
The ‘Super H-Mode’ regime is predicted to enable pedestal height and fusion performance substantially higher than standard H-Mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that is predicted by the EPED model to occur in strongly shaped plasmas above a critical pedestal density. Experiments on Alcator C-Mod and DIII-D have achieved access to the Super H-Mode (and Near Super H) regime, and obtained very high pedestal pressure, including the highest achieved on a tokamak (p
ped ~ 80 kPa) in C-Mod experiments operating near the ITER magnetic field. DIII-D Super H experiments have demonstrated strong performance, including the highest stored energy in the present configuration of DIII-D (W ~ 2.2–3.2 MJ), while utilizing only about half of the available heating power (P
heat ~ 7–12 MW). These DIII-D experiments have obtained the highest value of peak fusion gain, Q
DT,equiv ~ 0.5, achieved on a medium scale (R < 2 m) tokamak. Sustained high performance operation (β
N ~ 2.9, H98 ~ 1.6) has been achieved utilizing n = 3 magnetic perturbations for density and impurity control. Pedestal and global confinement has been maintained in the presence of deuterium and nitrogen gas puffing, which enables a more radiative divertor condition. A pair of simple performance metrics is developed to assess and compare regimes. Super H-Mode access is predicted for ITER and expected, based on both theoretical prediction and observed normalized performance, to allow ITER to achieve its goals (Q = 10) at I
p < 15 MA, and to potentially enable more compact, cost effective pilot plant and reactor designs.
Funder
US Department of Energy, Office of Fusion Energy Sciences
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献