A noise-controlling method by hybrid current-stimulation and voltage-measurement for electrical impedance tomography (HCSVM-EIT)

Author:

Gao ZengfengORCID,Darma Panji NursetiaORCID,Sun BoORCID,Kawashima DaisukeORCID,Takei MasahiroORCID

Abstract

Abstract Image reconstruction in electrical impedance tomography (EIT) is a typical ill-posed inverse problem, from which the stability of conductivity reconstruction affects the reliability of physiological parameters evaluation. In order to improve the stability, the effect of boundary voltage noise on conductivity reconstruction should be controlled. A noise-controlling method based on hybrid current-stimulation and voltage-measurement for EIT (HCSVM-EIT) is proposed for stable conductivity reconstruction. In HCSVM-EIT, the boundary voltage is measured by one current-stimulation and voltage-measurement pattern (high-SNR pattern) with a higher signal-to-noise ratio (SNR); the sensitivity matrix is calculated by another current-stimulation and voltage-measurement pattern (low-cond pattern) with a lower condition number; the boundary voltage is then transformed from the high-SNR pattern into the low-cond pattern by multiplying by an optimized transformation matrix for image reconstruction. The stability of conductivity reconstruction is improved by combining the advantages of the high-SNR pattern for boundary voltage measurement and the low-cond pattern for sensitivity matrix calculation. The simulation results show that the HCSVM-EIT increases the correlation coefficient (CC) of conductivity reconstruction. The experiment results show that the CC of conductivity reconstruction of the human lower limb is increased from 0.3424 to 0.5580 by 62.97% compared to the quasi-adjacent pattern, and from 0.4942 to 0.5580 by 12.91% compared to the adjacent pattern. In conclusion, the stable conductivity reconstruction with higher CC in HCSVM-EIT improves the reliability of physiological parameters evaluation for disease detection.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3