Study of transmembrane ion transport under tonicity imbalance using a combination of low frequency-electrical impedance spectroscopy (LF-EIS) and improved ion transport model

Author:

Li SongshiORCID,Kawashima DaisukeORCID,Sugawara Michiko,Obara Hiromichi,Okeyo Kennedy Omondi,Takei Masahiro

Abstract

Abstract Transmembrane ion transport under tonicity imbalance has been investigated using a combination of low frequency-electrical impedance spectroscopy (LF-EIS) and improved ion transport model, by considering the cell diameter d [m] and the initial intracellular ion concentration c in [mM] as a function of tonicity expressed by sucrose concentration c s [mM]. The transmembrane ion transport is influenced by extracellular tonicity conditions, leading to a facilitation/inhibition of ion passage through the cell membrane. The transmembrane transport coefficient P [m s−1], which represents the ability of transmembrane ion transport, is calculated by the extracellular ion concentrations obtained by improved ion transport model and LF-EIS measurement. P is calculated as 4.11 × 10−6 and 3.44 × 10−6 m s−1 at c s of 10 and 30 mM representing hypotonic condition, 2.44 × 10−6 m s−1 at c s of 50 mM representing isotonic condition, and 3.68 × 10−6, 5.16 × 10−6 , 9.51 × 10−6, and 14.89 × 10−6 m s−1 at c s of 75, 100, 125 and 150 mM representing hypertonic condition. The LF-EIS results indicate that the transmembrane ion transport is promoted under hypertonic and hypotonic conditions compared to isotonic condition. To verify the LF-EIS results, fluorescence intensity F [–] of extracellular potassium ions is observed to obtain the temporal distribution of average potassium ion concentration within the region of 3.6 μm from cell membrane interface c ROI [mM]. The slopes of ∆c ROI /c ROI1 to time t are 0.0003, 0.0002, and 0.0006 under hypotonic, isotonic, and hypertonic conditions, where c ROI1 denotes initial c ROI , which shows the same tendency with LF-EIS result that is verified by the potassium ion fluorescence observation.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Nursing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3