Comparison of post reconstruction- and reconstruction-based deep learning denoising methods in cardiac SPECT

Author:

Sohlberg AnttiORCID,Kangasmaa TuijaORCID,Tikkakoski Antti

Abstract

Abstract Objective. The quality of myocardial perfusion SPECT (MPS) images is often hampered by low count statistics. Poor image quality might hinder reporting the studies and in the worst case lead to erroneous diagnosis. Deep learning (DL)-based methods can be used to improve the quality of the low count studies. DL can be applied in several different methods, which might affect the outcome. The aim of this study was to investigate the differences between post reconstruction- and reconstruction-based denoising methods. Approach. A UNET-type network was trained using ordered subsets expectation maximization (OSEM) reconstructed MPS studies acquired with half, quarter and eighth of full-activity. The trained network was applied as a post reconstruction denoiser (OSEM+DL) and it was incorporated into a regularized reconstruction algorithm as a deep learning penalty (DLP). OSEM+DL and DLP were compared against each other and against OSEM images without DL denoising in terms of noise level, myocardium-ventricle contrast and defect detection performance with signal-to-noise ratio of a non-prewhitening matched filter (NPWMF-SNR) applied to artificial perfusion defects inserted into defect-free clinical MPS scans. Comparisons were made using half-, quarter- and eighth-activity data. Main results. OSEM+DL provided lower noise level at all activities than other methods. DLP’s noise level was also always lower than matching activity OSEM’s. In addition, OSEM+DL and DLP outperformed OSEM in defect detection performance, but contrary to noise level ranking DLP had higher NPWMF-SNR overall than OSEM+DL. The myocardium-ventricle contrast was highest with DLP and lowest with OSEM+DL. Both OSEM+DL and DLP offered better image quality than OSEM, but visually perfusion defects were deeper in OSEM images at low activities. Significance. Both post reconstruction- and reconstruction-based DL denoising methods have great potential for MPS. The preference between these methods is a trade-off between smoother images and better defect detection performance.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3