Thickness-extensible higher order plate theory with enforced C1 continuity for the analysis of PEEK medical implants

Author:

Tasneem Mohamad Hasan Bin,Al-Jahwari FarooqORCID,Al-Kindi Mahmood,Al-Lawati Imad,Al Lawati Abdulmonem

Abstract

Abstract Plate-like structures had been thoroughly studied in literature over years to reduce the computational space from 3D to 2D. Many of these theories suffer either from satisfying the free traction condition or thickness extensibility in addition to the consistency of transverse shear strain energy. This work presents a higher order shear deformation thickness-extensible plate theory (eHSDT) for the analysis of plates. The proposed eHSDT satisfies the condition of free traction as other theories do but it also satisfies the condition of consistency of transverse shear strain energy which is neglected by many theories in the area of plates and shells. The implementation of the proposed theory in displacement-based finite element procedure requires continuity of derivatives across elements. This necessary condition was achieved using the penalty enforcement method for derivative-based nodal degrees of freedom across the standard 9-nodes Lagrange element. The theory was tested for elastic bending deformation of Polyether-ether-ketone (PEEK) which is one of the basic materials for medical implants. The theory showed good accuracy compared to experimental data of the three-points bending test. The present eHSDT was also tested for different conditions with a wide range of aspects ratios (thin to thick plates) and different boundary conditions. The accuracy of the proposed eHSDT was verified against exact solutions for these conditions which showed the advantage over other approaches and commercial finite element packages.

Publisher

IOP Publishing

Reference48 articles.

1. Polymeric biomaterials for medical implants and devices;Teo;ACS Biomater. Sci. Eng.,2016

2. A review of PEEK polymer’s properties and its use in prosthodontics;Skirbutis;Stomatologijal,2017

3. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone;Zhao;Biomaterials,2013

4. 3D printing of polyether-ether-ketone for biomedical applications;Singh;Eur. Polym. J.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3