Classification of left and right foot kinaesthetic motor imagery using common spatial pattern

Author:

Tariq Madiha,Trivailo Pavel MORCID,Simic MilanORCID

Abstract

Abstract Background and objectives: Brain-computer interface (BCI) systems typically deploy common spatial pattern (CSP) for feature extraction of mu and beta rhythms based on upper-limbs kinaesthetic motor imageries (KMI). However, it was not used to classify the left versus right foot KMI, due to its location inside the mesial wall of sensorimotor cortex, which makes it difficult to be detected. We report novel classification of mu and beta EEG features, during left and right foot KMI cognitive task, using CSP, and filter bank common spatial pattern (FBCSP) method, to optimize the subject-specific band selection. We initially proposed CSP method, followed by the implementation of FBCSP for optimization of individual spatial patterns, wherein a set of CSP filters was learned, for each of the time/frequency filters in a supervised way. This was followed by the log-variance feature extraction and concatenation of all features (over all chosen spectral-filters). Subsequently, supervised machine learning was implemented, i.e. logistic regression (Logreg) and linear discriminant analysis (LDA), in order to compare the respective foot KMI classification rates. Training and testing data, used in the model, was validated using 10-fold cross validation. Four methodology paradigms are reported, i.e. CSP LDA, CSP Logreg, and FBCSP LDA, FBCSP Logreg. All paradigms resulted in an average classification accuracy rate above the statistical chance level of 60.0% (P < 0.01). On average, FBCSP LDA outperformed remaining paradigms with kappa score of 0.41 and classification accuracy of 70.28% ± 4.23. Similarly, this paradigm enabled discrimination between right and left foot KMI cognitive task at highest accuracy rate i.e. maximum 77.5% with kappa = 0.55 and the area under ROC curve as 0.70 (in single-trial analysis). The proposed novel paradigms, using CSP and FBCSP, established a potential to exploit the left versus right foot imagery classification, in synchronous 2-class BCI for controlling robotic foot, or foot neuroprosthesis.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3