Modelling neuron fiber interaction and coupling in non-myelinated bundled fiber

Author:

Bujar Baruah Satyabrat MallaORCID,Roy Soumik

Abstract

Abstract Understanding the local dynamics of a neural network relies heavily on local field potential and cell-field interaction. But it is still unclear how local the local potential is and what kinds of consequences the trans-membrane current flow and produced electric field have on the local neural fiber. Mimicking signal transmission in neighboring nerve fiber, a simulation model is built to analyze local behavior due to trans-membrane current, cell-field interactions, and their repercussions on the bundled fiber system. Simulation studies reveal that depending on the coupling parameters, activity in one fiber can depolarize or hyper-polarize adjacent fibers. The suggested cell-field interaction model was tested using an orientation-selective coupled retinal ganglion cell network, which was compared to its uncoupled counterpart. The proposed work has been used to model and simulate local signal dynamics in a bundled fiber system of an orientation-selective RGC network due to cell-field interaction, as well as to gain insight into the possible significance of dendritic fiber coupling in orientation selectivity bandwidth adjustment.

Publisher

IOP Publishing

Subject

General Nursing

Reference52 articles.

1. Problems in the comparative study of brain waves;Bullock;The Yale Journal of Biology and Medicine,1945

2. Cochlear potentials elicited from bats by supersonic sounds;Galambos;The Journal of the Acoustical Society of America,1942

3. Cortical representation of tactile sensibility as indicated by cortical potentials;Marshall;Science,1937

4. Neurophysiological investigation of the basis of the fmri signal;Logothetis;Nature,2001

5. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque;Schroeder;Cerebral cortex (New York, NY: 1991),1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3