PMF-CNN: parallel multi-band fusion convolutional neural network for SSVEP-EEG decoding

Author:

Yang Jianli,Zhao Songlei,Fu Zhiyu,Liu XiulingORCID

Abstract

Abstract Steady-state visual evoked potential (SSVEP) is a key technique of electroencephalography (EEG)-based brain-computer interfaces (BCI), which has been widely applied to neurological function assessment and postoperative rehabilitation. However, accurate decoding of the user’s intended based on the SSVEP-EEG signals is challenging due to the low signal-to-noise ratio and large individual variability of the signals. To address these issues, we proposed a parallel multi-band fusion convolutional neural network (PMF-CNN). Multi frequency band signals were served as the input of PMF-CNN to fully utilize the time-frequency information of EEG. Three parallel modules, spatial self-attention (SAM), temporal self-attention (TAM), and squeeze-excitation (SEM), were proposed to automatically extract multi-dimensional features from spatial, temporal, and frequency domains, respectively. A novel spatial-temporal-frequency representation were designed to capture the correlation of electrode channels, time intervals, and different sub-harmonics by using SAM, TAM, and SEM, respectively. The three parallel modules operate independently and simultaneously. A four layers CNN classification module was designed to fuse parallel multi-dimensional features and achieve the accurate classification of SSVEP-EEG signals. The PMF-CNN was further interpreted by using brain functional connectivity analysis. The proposed method was validated using two large publicly available datasets. After trained using our proposed dual-stage training pattern, the classification accuracies were 99.37% and 93.96%, respectively, which are superior to the current state-of-the-art SSVEP-EEG classification algorithms. The algorithm exhibits high classification accuracy and good robustness, which has the potential to be applied to postoperative rehabilitation.

Funder

National Natural Science Foundation of China

Interdisciplinary Research Program of Natural Science of Hebei University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3