Automated detection of vertebral body misalignments in orthogonal kV and MV guided radiotherapy: application to a comprehensive retrospective dataset

Author:

Charters John AORCID,Luximon Dishane,Petragallo Rachel,Neylon JackORCID,Low Daniel A,Lamb James M

Abstract

Abstract Objective. In image-guided radiotherapy (IGRT), off-by-one vertebral body misalignments are rare but potentially catastrophic. In this study, a novel detection method for such misalignments in IGRT was investigated using densely-connected convolutional networks (DenseNets) for applications towards real-time error prevention and retrospective error auditing. Approach. A total of 4213 images acquired from 527 radiotherapy patients aligned with planar kV or MV radiographs were used to develop and test error-detection software modules. Digitally reconstructed radiographs (DRRs) and setup images were retrieved and co-registered according to the clinically applied alignment contained in the DICOM REG files. A semi-automated algorithm was developed to simulate patient positioning errors on the anterior-posterior (AP) and lateral (LAT) images shifted by one vertebral body. A DenseNet architecture was designed to classify either AP images individually or AP and LAT image pairs. Receiver-operator characteristic curves (ROC) and areas under the curves (AUC) were computed to evaluate the classifiers on test subsets. Subsequently, the algorithm was applied to the entire dataset in order to retrospectively determine the absolute off-by-one vertebral body error rate for planar radiograph guided RT at our institution from 2011–2021. Main results. The AUCs for the kV models were 0.98 for unpaired AP and 0.99 for paired AP-LAT. The AUC for the MV AP model was 0.92. For a specificity of 95%, the paired kV model achieved a sensitivity of 99%. Application of the model to the entire dataset yielded a per-fraction off-by-one vertebral body error rate of 0.044% [0.0022%, 0.21%] for paired kV IGRT including one previously unreported error. Significance. Our error detection algorithm was successful in classifying vertebral body positioning errors with sufficient accuracy for retrospective quality control and real-time error prevention. The reported positioning error rate for planar radiograph IGRT is unique in being determined independently of an error reporting system.

Funder

Agency for Healthcare Research and Quality

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3