Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process

Author:

Abu-Ayyad Ma’MounORCID,Lad Yash SharadORCID,Aguilar Dario,Karami KianaORCID,Attaluri AnilchandraORCID

Abstract

Abstract Magnetic nanoparticle hyperthermia (MNPH) has emerged as a promising cancer treatment that complements conventional ionizing radiation and chemotherapy. MNPH involves injecting iron-oxide nanoparticles into the tumor and exposing it to an alternating magnetic field (AMF). Iron oxide nanoparticles produce heat when exposed to radiofrequency AMF due to hysteresis loss. Minimizing the non-specific heating in human tissues caused by exposure to AMF is crucial. A pulse-width-modulated AMF has been shown to minimize eddy-current heating in superficial tissues. This project developed a control strategy based on a simplified mathematical model in MATLAB SIMULINK® to minimize eddy current heating while maintaining a therapeutic temperature in the tumor. A minimum tumor temperature of 43 [°C] is required for at least 30 [min] for effective hyperthermia, while maintaining the surrounding healthy tissues below 39 [°C]. A model predictive control (MPC) algorithm was used to reach the target temperature within approximately 100 [s]. As a constrained MPC approach, a maximum AMF amplitude of 36 [kA/m] and increment of 5 [kA/m/s] were applied. MPC utilized the AMF amplitude as an input and incorporated the open-loop response of the eddy current heating in its dynamic matrix. A conventional proportional integral (PI) controller was implemented and compared with the MPC performance. The results showed that MPC had a faster response (30 [s]) with minimal overshoot (1.4 [%]) than PI controller (115 [s] and 5.7 [%]) response. In addition, the MPC method performed better than the structured PI controller in its ability to handle constraints and changes in process parameters.

Funder

National Cancer Institute of the National Institutes of Health

Pennsylvania State University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3