TiO2 nanotubes-MoS2/PDA-LL-37 exhibits efficient anti-bacterial activity and facilitates new bone formation under near-infrared laser irradiation

Author:

Jin Mingchao,Zhu Juli,Meng Zhipeng,Jiang Xuesheng,Chen Zhuo,Xu Juntao,Gao Hongliang,Zhu Junkun,Wu FengfengORCID

Abstract

Abstract Titanium dioxide (TiO2), as one of the titanium (Ti)-based implants, holds a promise for a variety of anti-bacterial application in medical research. In the current study, a functional molybdenum disulfide (MoS2)/polydopamine (PDA)-LL-37 coating on titanium dioxide (TiO2) implant was prepared. Anodic oxidation and hydrothermal treatment was given to prepare TiO2 nanotubes-MoS2/PDA-LL-37 (T-M/P-L). The in vitro osteogenic effect of T-M/P-L was evaluated by measuring mesenchymal stem cell (MSC) adhesion, proliferation, alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, collagen secretion and osteoblast-specific messenger RNAs (mRNAs) expression. The determination on the anti-bacterial ability of T-M/P-L was followed. Furthermore, the ability of T-M/P-L to promote bone formation in vivo was evaluated. Near-infrared (NIR) laser irradiation exposure enabled the T-M/P-L coating-endowed Ti substrates to hold effective anti-bacterial ability. T-M/P-L promoted the adhesion and proliferation of MSCs. In addition, an increase was witnessed regarding the ALP activity, collagen secretion and ECM mineralization, along with the expression of runt-related transcription factor 2, ALP and osteocalcin in the presence of T-M/P-L. Additionally, T-M/P-L could stimulate endothelial cells to secrete vascular endothelial growth factor (VEGF) and promote capillary-like tubule formation. Upon NIR laser irradiation exposure, T-M/P-L not only exhibited efficient in vivo anti-bacterial activity but also facilitated new bone formation. Collectively, T-M/P-L had enhanced anti-bacterial and osteogenic activity under NIR laser irradiation.

Funder

Medical health Science and Technology Project of Zhejiang Province

the Traditional Chinese Medicine Scientific Research and Technology Project of Zhejiang Province

Young Talents Project of Huzhou Central Hospital

the Application of Public Welfare Technology in Zhejiang Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3