Design and development of keratin/chitosan/glucosamine sulfate composite loaded MWCNT intended for osteoarthritis drug delivery

Author:

Srinivasan VenkataramananORCID,Palanisamy PonnusamyORCID

Abstract

Abstract Osteoarthritis (OA) is an inflammatory disease that affects the cartilage and tissues around the joints, which results in excessive pain and stiffness. One of the most critical challenges for improving the therapeutic effect in OA treatments is the current drug design utilizing functional polymers. Indeed, there is a need to design and develop novel therapeutic drugs for positive outcomes. In this view, glucosamine sulfate is a drug used to manage OA because of its potential therapeutic effects on cartilage and ability to inhibit disease progression. This research aims to develop a keratin/chitosan/glucosamine sulfate (KRT/CS/GLS) composite loaded functionalized multi-walled carbon nanotubes (MWCNTs) as a potential carrier for the treatment of OA. The nanocomposite was developed using various ratios of KRT/CS/GLS, and MWCNT. Molecular docking analysis has been performed with (D-glucosamine) and targeted proteins (Protein Data Bank ID: 1HJV, 1ALU) to determine the binding affinity and interactions. Field emission scanning electron microscopy study showed that the composite KRT/CS/GLS incorporated on the surface of functionalized MWCNTs effectively. Fourier transform infrared spectroscopy analysis confirmed the presence of KRT/CS/GLS in the nanocomposite and remained intact. X-ray diffraction analysis indicated that the nature of the composite in MWCNT transformed from a crystalline to an amorphous state. Thermo gravimetric analysis revealed that the nanocomposite has a high thermal decomposition temperature of 420 °C. The MTT assay results showed that 83% of cell viability has remained in RAW 264.7 cells at the maximum concentration (500 μg ml−1) of MWCNT-GLS/KRT/CS nanocomposite. Also, molecular docking results revealed the excellent binding affinity of D-glucosamine to each protein structure (PDB ID: 1HJV and 1ALU).

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3