Fabrication and application of salicin-polycaprolactone 3D-printed scaffold in the healing of femur bone defects

Author:

Jalali HaniehORCID,Salemian MiladORCID,Nabiuni MohammadORCID,Kouchesfehani Homa MohseniORCID,Bardei Latifeh KarimzadehORCID,Gregory CarlORCID

Abstract

Abstract Polycaprolactone (PCL) is a suitable material for bone repair due to good biocompatibility and mechanical properties. However, low bioactivity and hydrophobicity pose major challenges for its biomedical applications. To overcome these limitations, PCL-based scaffolds loaded with bioactive agents have been developed. Salicin (Sal) is an anti-inflammatory and analgesic herbal glycoside with osteogenic potential. In the present study, we aimed to produce a Sal-laden PCL (PCL–Sal) scaffold for bone healing applications. Three-dimensional scaffolds were produced and their biocompatibility, and physical-chemical characteristics were determined. The osteogenic potential of the PCL (PCL) and PCL–Sal scaffolds was evaluated using bone marrow mesenchymal stem cells (BMSCs). Scaffolds were implanted into a 5 mm bone defect created in the femur of adult rats, and the new bone fraction was determined using micro-computed tomography scanning at one-month follow-up. PCL–Sal scaffold had a structure, porosity, and fiber diameter suitable for bone construction. It also possessed a higher rate of hydrophilicity and bioactivity compared to the PCL, providing a suitable surface for the proliferation and bone differentiation of BMSCs. Furthermore, PCL–Sal scaffolds showed a higher capacity to scavenge free radicals compared to PCL. The improved bone healing potential of the PCL–Sal scaffold was also confirmed according to in vivo implantation results. Our findings revealed that the Sal-laden implant could be considered for bone repair due to desirable characteristics of Sal such as hydrophilicity, surface modification for cell attachment, and antioxidant properties.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3