Abstract
Abstract
Biofouling is the most common cause of bacterial contamination in implanted materials/devices resulting in severe inflammation, implant mobilization, and eventual failure. Since bacterial attachment represents the initial step toward biofouling, developing synthetic surfaces that prevent bacterial adhesion is of keen interest in biomaterials research. In this study, we develop antifouling nanoplatforms that effectively impede bacterial adhesion and the consequent biofilm formation. We synthesize the antifouling nanoplatform by introducing silicon (Si)/silica nanoassemblies to the surface through ultrafast ionization of Si substrates. We assess the effectiveness of these nanoplatforms in inhibiting Escherichia coli (E. coli) adhesion. The findings reveal a significant reduction in bacterial attachment on the nanoplatform compared to untreated silicon, with bacteria forming smaller colonies. By manipulating physicochemical characteristics such as nanoassembly size/concentration and nanovoid size, we further control bacterial attachment. These findings suggest the potential of our synthesized nanoplatform in developing biomedical implants/devices with improved antifouling properties.
Funder
Natural Science and Engineering Research Council of Canada