Multifaceted tannin crosslinked bioinspired dECM decorated nanofibers modulating cell–scaffold biointerface for tympanic membrane perforation bioengineering

Author:

Hussain ZahidORCID,Ding Pi,Zhang Liwei,Zhang Yajie,Ullah Salim,Liu Yuanshan,Ullah Ismat,Wang Zhili,Zheng Penghui,Pei RenjunORCID

Abstract

Abstract Tympanic membrane (TM) perforation leads to persistent otitis media, conductive deafness, and affects life quality. Ointment medication may not be sufficient to treat TM perforation (TMP) due to the lack of an underlying tissue matrix and thus requiring a scaffold-based application. The engineering of scaffold biointerface close to the matrix via tissue-specific decellularized extracellular matrix (dECM) is crucial in instructing cell behaviour and regulating cell-material interaction in the bioengineering domain. Herein, polycaprolactone (PCL) and TM-dECM (from Sprague–Dawley rats) were combined in a different ratio in nanofibrous form using an electrospinning process and crosslinked via tannic acid. The histological and biochemical assays demonstrated that chemical and enzymatic decellularization steps removed cellular/immunogenic contents while retaining collagen and glycosaminoglycan. The morphological, physicochemical, thermomechanical, contact angle, and surface chemical studies demonstrated that the tannin crosslinked PCL/dECM nanofibers fine-tune biophysical and biochemical properties. The multifaceted crosslinked nanofibers hold the tunable distribution of dECM moieties, assembled into a spool-shaped membrane, and could easily insert into perforated sites. The dECM decorated fibers provide a preferable biomimetic matrix for L929 fibroblast adhesion, proliferation, matrix adsorption, and f-actin saturation, which could be crucial for bioengineering. Overall, dECM patterning, surface hydrophilicity, interconnected microporosities, and multifaceted nanofibrous biosystem modulate cell–scaffold performance and could open opportunities to reconstruct TMP in a biomimetic fashion.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3