The effect of magnesium ions synergistic with mineralized collagen on osteogenesis/angiogenesis properties by modulating macrophage polarization in vitro and in vivo

Author:

Liu ChangORCID,Ma Nan,Sun Changan,Shen XuechengORCID,Li Jinwei,Wang Chengyue

Abstract

Abstract In bone tissue engineering, the bone immunomodulatory properties of biomaterials are critical for bone regeneration, which is a synergistic process involving physiological activities like immune response, osteogenesis, and angiogenesis. The effect of the macrophage immune microenvironment on the osteogenesis and angiogenesis of various material extracts was examined in this experiment using Mg2+ and Nano-hydroxyapatite/collagen (nHAC) in both a single application and a combined form. This study in vitro revealed that the two compounds combined significantly inhibited the NF-κB signaling pathway and reduced the release of inflammatory factors from macrophages when compared with the extraction phase alone. Additionally, by contributing to the polarization of macrophages towards the M2 type, the combined effects of the two materials can significantly improve osteogenesis/angiogenesis. The results of in vivo experiments confirmed that Mg2+/nHAC significantly promoted bone regeneration and angiogenesis. This study offers a promising method for enhancing bone graft material osseointegration.

Funder

Applied Basic Research Program of Liaoning Province

Department of Education of Liaoning Province

Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3