Expansion and differentiation of human neural stem cells on synthesized integrin binding peptide surfaces

Author:

Jiang Chenyang,Campbell-Rance Debbie,Wu Shujun,Wang Yanlin,Sun Huifang,Xu YumingORCID,Wen Xuejun

Abstract

Abstract The extracellular matrix plays a crucial role in the growth of human neural stem cells (hNSCs) by forming a stem cell niche, both in vitro and in vivo. The demand for defined synthetic substrates has been increasing recently in stem cell research, reflecting the requirements for precise functions and safety concerns in potential clinical approaches. In this study, we tested the adhesion and expansion of one of the most representative hNSC lines, the ReNcell VM Human Neural Progenitor Cell Line, in a pure-synthesized short peptide-based in vitro niche using a previously established integrin-binding peptide array. Spontaneous cell differentiation was then induced using two different in vitro approaches to further confirm the multipotent features of cells treated with the peptides. Twelve different integrin-binding peptides were capable of supporting hNSC adhesion and expansion at varied proliferation rates. In the ReNcell medium-based differentiation approach, cells detached in almost all peptide-based groups, except integrin α5β1 binding peptide. In an altered differentiation process induced by retinoic acid containing neural differentiation medium, cell adhesion was retained in all 12 peptide groups. These peptides also appeared to have varied effects on the differentiation potential of hNSCs towards neurons and astrocytes. Our findings provide abundant options for the development of in vitro neural stem cell niches and will help develop promising tools for disease modeling and future stem cell therapies for neurological diseases.

Funder

Commonwealth of Virginia Alzheimer’s and Related Diseases Research Award Fund

the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Henan Programs for Medical Science and Technology Development

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3