In vitro cellular biocompatibility and in vivo degradation behavior of calcium phosphate-coated ZK60 magnesium alloy

Author:

Trang Le ThiORCID,Le Hai Van,Hiromoto Sachiko,Minho O,Kobayashi Equo,Nguyen Nam Viet,Cao Nguyen Quang

Abstract

Abstract Calcium phosphate (Ca-P) surface coating is a simple but effective way to enhance both corrosion resistance and biocompatibility of ZK60 magnesium alloy. However, cell compatibility on different Ca-P layers coated on ZK60 alloy has seldom been investigated. In this study, the effects of type, morphology and corrosion protection of several Ca-P coatings formed at pH 6.5, 7.8 and 10.2 on cell behavior were examined by using an osteoblastic cell line MC3T3-E1. Furthermore, in vivo behavior in rabbits of the alloy coated with the optimum Ca-P layer was also studied. It was found that the surface factors governed the cell morphology and density. The coating morphology plays a dominant role in these surface factors. The sample coated at pH 7.8 showed the best cellular biocompatibility, suggesting that the hydroxyapatite (HAp) layer formed at pH 7.8 was the optimum coating. In rabbits, this optimum coating enhanced remarkably the corrosion resistance of the alloy. During implantation, the outermost crystals of the HAp coating were shortened and thinned due to the dissolution of HAp caused by the body fluid of the rabbits. It is indicated that ZK60 alloy coated at pH 7.8 can be applied as a biodegradable implant.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3