Universal calcium fluctuations in Hydra morphogenesis

Author:

Agam OdedORCID,Braun ErezORCID

Abstract

Abstract Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca2+) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca2+ during Hydra regeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field and heptanol, a gap junction-blocking drug. Both lead to the modulation of the Ca2+ activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca2+ activity in the Hydra’s tissue and increases its spatial correlations, while the administration of heptanol inhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca2+ spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca2+ activity is spatially localized, and the Hydra’s tissue operates near the onset of bistability, where the local Ca2+ activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca2+ field in Hydra morphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.

Funder

Israel Science Foundation

Publisher

IOP Publishing

Subject

Cell Biology,Molecular Biology,Structural Biology,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3