As good as it gets: a scaling comparison of DNA computing, network biocomputing, and electronic computing approaches to an NP-complete problem

Author:

Sudalaiyadum Perumal AyyappasamyORCID,Wang Zihao,Ippoliti Giulia,van Delft Falco C M J MORCID,Kari Lila,Nicolau Dan VORCID

Abstract

Abstract All known algorithms to solve nondeterministic polynomial (NP) complete problems, relevant to many real-life applications, require the exploration of a space of potential solutions, which grows exponentially with the size of the problem. Since electronic computers can implement only limited parallelism, their use for solving NP-complete problems is impractical for very large instances, and consequently alternative massively parallel computing approaches were proposed to address this challenge. We present a scaling analysis of two such alternative computing approaches, DNA computing (DNA-C) and network biocomputing with agents (NB-C), compared with electronic computing (E-C). The Subset Sum Problem (SSP), a known NP-complete problem, was used as a computational benchmark, to compare the volume, the computing time, and the energy required for each type of computation, relative to the input size. Our analysis shows that the sequentiality of E-C translates in a very small volume compared to that required by DNA-C and NB-C, at the cost of the E-C computing time being outperformed first by DNA-C (linear run time), followed by NB-C. Finally, NB-C appears to be more energy-efficient than DNA-C for some types of input sets, while being less energy-efficient for others, with E-C being always an order of magnitude less energy efficient than DNA-C. This scaling study suggest that presently none of these computing approaches win, even theoretically, for all three key performance criteria, and that all require breakthroughs to overcome their limitations, with potential solutions including hybrid computing approaches.

Funder

Horizon 2020 Framework Programme

Natural Sciences and Engineering Research Council of Canada

Social Sciences and Humanities Research Council of Canada

Defense Advanced Research Projects Agency

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference124 articles.

1. Protein design is NP-hard;Pierce;Protein Eng. Des. Select.,2002

2. Complexity of protein folding;Fraenkel;Bull. Math. Biol.,1993

3. On modularity clustering;Brandes;IEEE Trans. Knowl. Data Eng.,2008

4. A new FPGA detailed routing approach via search-based Boolean satisfiability;Gi-Joon Nam;IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,2002

5. Neural computation of decisions in optimization problems;Hopfield;Biol. Cybern.,1985

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3