Valley-polarized and supercollimated electronic transport in an 8-Pmmn borophene superlattice

Author:

Xu Yafang,Fang Yu,Jin Guojun

Abstract

Abstract Analogous to real spins, valleys as carriers of information can play significant roles in physical properties of two-dimensional Dirac materials. On the other hand, utilizing external periodic potential is an efficient method to manipulate their band structures and transport properties. In this work, we investigate the valley dependent optics-like behaviors based on an 8-Pmmn borophene superlattice with the transfer matrix method and effective band approach. Firstly, it is found that the band structure is renormalized, more tilted Dirac cones are generated, and the group velocities are modified by the periodic potentials. Secondly, due to the exotic tilted Dirac cones in 8-Pmmn borophene, a perfect valley selected angle filter can be realized. The electrons with a specific incident angle can transmit completely in an energy window, which is flexibly tunable by changing the periodic potential. Thirdly, by using the Green’s function to simulate the time evolution of wave packets, electrons can be shown to propagate without any diffraction, valley electron beam supercollimation happens by modulating the potential parameters. Different from the graphene superlattice, the electron supercollimation here is valley dependent and can be used as a valley electron beam collimator. Fourthly, we can tune the polarization and supercollimation angles by changing the superlattice direction. These intriguing results in an 8-Pmmn borophene-based superlattice offer more opportunities in diverse electronic transport phenomena and may facilitate the devices applications in valleytronics and electron-optics.

Funder

National Natural Science Foundation of China

Universities Natural Science Research Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3