Abstract
Abstract
As building blocks of acoustic metamaterials, resonant scatterers have demonstrated their ability to modulate the effective fluid parameters, which subsequently possess extreme properties such as negative bulk modulus or negative mass density. Promising applications have been shown such as extraordinary absorption, focusing, and abnormal refraction for instance. However, acoustic waves can be further controlled in Willis materials by harnessing the coupling parameters. In this work, we derive the closed forms of the effective parameters from the transfer matrix in three asymmetric and reciprocal one-dimensional resonant configurations and exhibit the differences in terms of coupling coefficients. The way in which Willis coupling occurs in spatially asymmetric unit cells is highlighted. In addition, the analysis shows the absence of odd Willis coupling for reciprocal configurations. These effective parameters are validated against experimental and numerical results in the three configurations. This article paves the way of a novel physical understanding and engineering use of Willis acoustic materials.
Funder
Agence Nationale de la Recherche
Ministerio de Ciencia, Innovación y Universidades
Research Grants Council, University Grants Committee
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献