Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials

Author:

Groby Jean-PhilippeORCID,Malléjac MatthieuORCID,Merkel Aurélien,Romero-García VicenteORCID,Tournat Vincent,Torrent Daniel,Li Jensen

Abstract

Abstract As building blocks of acoustic metamaterials, resonant scatterers have demonstrated their ability to modulate the effective fluid parameters, which subsequently possess extreme properties such as negative bulk modulus or negative mass density. Promising applications have been shown such as extraordinary absorption, focusing, and abnormal refraction for instance. However, acoustic waves can be further controlled in Willis materials by harnessing the coupling parameters. In this work, we derive the closed forms of the effective parameters from the transfer matrix in three asymmetric and reciprocal one-dimensional resonant configurations and exhibit the differences in terms of coupling coefficients. The way in which Willis coupling occurs in spatially asymmetric unit cells is highlighted. In addition, the analysis shows the absence of odd Willis coupling for reciprocal configurations. These effective parameters are validated against experimental and numerical results in the three configurations. This article paves the way of a novel physical understanding and engineering use of Willis acoustic materials.

Funder

Agence Nationale de la Recherche

Ministerio de Ciencia, Innovación y Universidades

Research Grants Council, University Grants Committee

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active Willis metamaterials with programmable density and stiffness;Journal of Applied Physics;2024-07-09

2. Direction-dependent elastic wave scattering and mode coupling in elastic plates;Health Monitoring of Structural and Biological Systems XVIII;2024-05-09

3. Willis coupling in one-dimensional poroelastic laminates;APL Materials;2024-04-01

4. Willis couplings in continuously varying cross-sectional area duct;The Journal of the Acoustical Society of America;2023-09-01

5. Interface transmittance and interface waves in acoustic Willis media;Frontiers in Physics;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3