Evolution of cooperation in synergistically evolving dynamic interdependent networks: fundamental advantages of coordinated network evolution

Author:

Yang ZhihuORCID,Yu Changbin,Kim Jonghyuk,Li Zhi,Wang Long

Abstract

Abstract Real networks are not only multi-layered yet also dynamic. The role of coordinated network evolution regarding dynamic multi-layer networks where both network and strategy evolution simultaneously show diverse interdependence by layers remains poorly addressed. Here, we propose a general and simple coevolution framework to analyze how coordination of different dynamical processes affects strategy propagation in synergistically evolving interdependent networks. The strategic feedback constitutes the main driving force of network evolution yet the inherent cross-layer self-optimization functions as its compensation. We show that these two ingredients often catalyze a better performance of network evolution in propagating cooperation. Coordinated network evolution may be a double-edged sword to cooperation and the network-adapting rate plays a crucial role in flipping its double-sided effect. It often economizes the cost and time consumption for driving the system to the full cooperation phase. Importantly, strongly coupled slow-tuned networks can outperform weakly coupled fast-regulated networks in solving social dilemmas, highlighting the fundamental advantages of coordinated network evolution and the importance of synergistic effect of dynamical processes in upholding human cooperation in multiplex networks.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A double-edged sword: diverse interactions in hypergraphs;New Journal of Physics;2024-09-01

2. Coevolution of relationship and interaction in cooperative dynamical multiplex networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-02-01

3. Dynamic hypernetwork-based evolutionary model of command-and-control network;Simulation Modelling Practice and Theory;2023-07

4. Random migration with tie retention promotes cooperation in the prisoner’s dilemma game;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-04-01

5. The emergence of a core–periphery structure in evolving multilayer network;Physica A: Statistical Mechanics and its Applications;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3