Detecting quantum attacks: a machine learning based defense strategy for practical continuous-variable quantum key distribution

Author:

Mao YiyuORCID,Huang WentiORCID,Zhong Hai,Wang Yijun,Qin Hao,Guo YingORCID,Huang Duan

Abstract

Abstract The practical security of a continuous-variable quantum key distribution (CVQKD) system is compromised by various attack strategies. The existing countermeasures against these attacks are to exploit different real-time monitoring modules to prevent different types of attacks, which significantly depend on the accuracy of the estimated excess noise and lack a universal defense method. In this paper, we propose a defense strategy for CVQKD systems to address these disadvantages and resist most of the known attack types. We investigate several features of the pulses that would be affected by different types of attacks, derive a feature vector based on these features as the input of an artificial neural network (ANN) model, and show the training and testing process of the ANN model for attack detection and classification. Simulation results show that the proposed scheme can effectively detect most of the known attacks at the cost of reducing a small part of secret keys and transmission distance. It establishes a universal attack detection model by simply monitoring several features of the pulses without knowing the exact type of attack in advance.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Hunan Province

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3