Tunable Dirac cones in single-layer selenium

Author:

Chen Zhendong,Hu Yuefang,Zhu Ziming,Zhang Wei

Abstract

Abstract Dirac cone, one of the main characters of topological materials, provides us an approach to explore topological phase transitions and topological states. Single-element 2D-Xenes are prominent candidates for hosting Dirac cones. Till now, the multiple Dirac cones, Dirac-like cones, and semi-metal Dirac point have been discovered in them. However, it is still difficult to realize the tunable Dirac cones due to the lack of appropriate materials. Using first-principles calculations, this paper proposes that monolayer selenium with square lattice could achieve tunable Dirac cones and a topological phase transition. Double structural phases of the monolayer selenium can be distinguished according to strain applied, i.e., buckled square and buckled rectangular phases, which have rich Dirac physics. There exist four anisotropic Dirac cones in the buckled square phase, owing to fourfold symmetry. The buckled rectangular phase hosts a topological phase transition from a 2D topological insulator with double Dirac cones to a simple insulator, with a Dirac semi-metal having single Dirac point as the phase transition point. Moreover, the topological insulator has a global band gap of 0.16 eV, suggesting its potential utilizations in room-temperature devices. These studies will greatly promote the development of the Dirac physics and widen the application ranges of 2D-Xenes.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3