Cavity-enhanced excitation of a quantum dot in the picosecond regime

Author:

Javadi AlisaORCID,Tomm NatashaORCID,Antoniadis Nadia OORCID,Brash Alistair JORCID,Schott Rüdiger,Valentin Sascha R,Wieck Andreas DORCID,Ludwig ArneORCID,Warburton Richard JORCID

Abstract

Abstract A major challenge in generating single photons with a single emitter is to excite the emitter while avoiding laser leakage into the collection path. Ideally, any scheme to suppress this leakage should not result in a loss in the efficiency of the single-photon source. Here, we investigate a scheme in which a single emitter, a semiconductor quantum dot, is embedded in a microcavity. The scheme exploits the splitting of the cavity mode into two orthogonally-polarised modes: one mode is used for excitation, the other for collection. By linking the experiment to theory, we show that the best population inversion is achieved with a laser pulse detuned from the quantum emitter. The Rabi oscillations exhibit an unusual dependence on pulse power. Our theory describes them quantitatively, enabling us to determine the absolute population inversion. By comparing the experimental results with our theoretical model, we determine a population inversion of 98 % 5 % + 1 % for optimal laser detuning. The Rabi oscillations depend on the sign of the laser-pulse detuning, a phenomenon arising from the non-trivial effect of phonons on the exciton dynamics. The exciton–phonon interaction is included in the theory and gives excellent agreement with all the experimental results.

Funder

Engineering and Physical Sciences Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsch-Französische Hochschule

H2020 Future and Emerging Technologies

H2020 Marie Skłodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3