Abstract
Abstract
For flowing quantum gases, it has been found that at long times an initial black-hole laser (BHL) configuration exhibits only two possible states: the ground state or a periodic self-oscillating state of continuous emission of solitons. So far, all the works on this subject are based on a highly idealized model, quite difficult to implement experimentally. Here we study the instability spectrum and the time evolution of a recently proposed realistic model of a BHL, thus providing a useful theoretical tool for the clear identification of black-hole lasing in future experiments. We further confirm the existence of a well-defined phase diagram at long times, which bespeaks universality in the long-time behavior of a BHL. Additionally, we develop a complementary model in which the same potential profile is applied to a subsonic homogeneous flowing condensate that, despite not forming a BHL, evolves toward the same phase diagram as the associated BHL model. This result reveals an even stronger form of robustness in the long-time behavior with respect to the transient, which goes beyond what has been described in the previous literature.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献