Finite element 3D model of a double quantum ring: effects of electric and laser fields on the interband transition

Author:

Radu AORCID,Stan CORCID,Bejan DORCID

Abstract

Abstract In this work, the changes in the energy of electrons and holes, oscillator strength and interband transition time when external fields are applied to a GaAs/AlGaAs semiconductor double ring grown by the droplet epitaxy technique are theoretically analyzed. We consider a static electric field and an intense laser field nonresonant with the quantum structure, with variable intensities and orientations with respect to the symmetry axis of the quantum ring (QR). In the formalism of the effective mass approximation for electrons and holes, the energies and wavefunctions were numerically computed using the finite element method implemented with an accurate three-dimensional model of the real QR. Laser dressing of the confining potential was performed using the exact integration formula at each point. Our results show major differences between the effects of the two types of applied fields, caused mainly by the static electric-field-induced strong polarizability of the confined electron-hole pair. In addition, the effects of both fields exhibit strong anisotropy in the electronic properties as a result of the particular flattened geometry of the QR. Proper combinations of field strengths and orientations are helpful in designing accurate tools for the sensitive manipulation of interband radiative properties.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference45 articles.

1. Quantum rings for beginners: energy spectra and persistent currents;Viefers;Physica E,2004

2. Quantum rings in electromagnetic fields;Alexeev,2018

3. Electronic structure of a quantum ring in a lateral electric field;Llorens;Phys. Rev. B,2001

4. Quantum rings under magnetic fields: electronic and optical properties;Barticevic;Phys. Rev. B,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3