Edge-effects dominate copying thermodynamics for finite-length molecular oligomers

Author:

Poulton Jenny M,Ouldridge Thomas EORCID

Abstract

Abstract A signature feature of living systems is their ability to produce copies of information-carrying molecular templates such as DNA. These copies are made by assembling a set of monomer molecules into a linear macromolecule with a sequence determined by the template. The copies produced have a finite length—they are often ‘oligomers’, or short polymers—and must eventually detach from their template. We explore the role of the resultant initiation and termination of the copy process in the thermodynamics of copying. By splitting the free-energy change of copy formation into informational and chemical terms, we show that, surprisingly, copy accuracy plays no direct role in the overall thermodynamics. Instead, finite-length templates function as highly-selective engines that interconvert chemical and information-based free energy stored in the environment; it is thermodynamically costly to produce outputs that are more similar to the oligomers in the environment than sequences obtained by randomly sampling monomers. In contrast to previous work that neglects separation, any excess free energy stored in correlations between copy and template sequences is lost when the copy fully detaches and mixes with the environment; these correlations therefore do not feature in the overall thermodynamics. Previously-derived constraints on copy accuracy therefore only manifest as kinetic barriers experienced while the copy is template attached; these barriers are easily surmounted by shorter oligomers.

Funder

Imperial College London

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3