Spin manipulation and decoherence in a quantum dot mediated by a synthetic spin–orbit coupling of broken T-symmetry

Author:

Huang Peihao,Hu Xuedong

Abstract

Abstract The electrical control of a spin qubit in a quantum dot (QD) relies on spin–orbit coupling (SOC), which could be either intrinsic to the underlying crystal lattice or heterostructure, or extrinsic via, for example, a micro-magnet. In experiments, micromagnets have been used as a synthetic SOC to enable strong coupling of a spin qubit in quantum dots with electric fields. Here we study theoretically the spin relaxation, pure dephasing, spin manipulation, and spin–photon coupling of an electron in a QD due to the synthetic SOC induced spin–orbit mixing. We find qualitative difference in the spin dynamics in the presence of a synthetic SOC compared with the case of the intrinsic SOC. Specifically, spin relaxation due to the synthetic SOC and deformation potential phonon emission (or Johnson noise) shows B 0 5 (or B 0) dependence with the magnetic field, which is in contrast with the B 0 7 (or B 0 3 ) dependence in the case of the intrinsic SOC. Moreover, charge noise induces fast spin dephasing to the first order of the synthetic SOC, which is in sharp contrast with the negligible spin pure dephasing in the case of the intrinsic SOC. These qualitative differences are attributed to the broken time-reversal symmetry (T-symmetry) of the synthetic SOC. An SOC with broken T-symmetry (such as the synthetic SOC from a micro-magnet) eliminates the ‘Van Vleck cancellation’ and causes a finite longitudinal spin–electric coupling that allows the longitudinal coupling between spin and electric field, and in turn allows spin pure dephasing. Finally, through proper choice of magnetic field orientation, the electric-dipole spin resonance via the synthetic SOC can be improved with potential applications in spin-based quantum computing.

Funder

Guangdong Provincial Key Laboratory

National Natural Science Foundation of China

US ARO

Shenzhen Science and Technology Program

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rashba effect in Frost–Musulin quantum dots: analytical study;Optical and Quantum Electronics;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3