Directed transport of a deformable particle in confined periodic structures

Author:

Li Jia-Jian,Lin Fu-Jun,Ai Bao-QuanORCID

Abstract

Abstract Directed transport of a deformable particle is numerically investigated in a two-dimensional periodic channel. Unlike the rigid particle, the deformable particle can pass through the channel bottleneck that is significantly smaller than the particle size. The deformable characteristics of the particle can greatly affect the directed transport of the particle. (i) For the case of active deformable particle, the self-propelled velocity can break thermodynamics equilibrium and induce the directed transport. The average velocity is a peak (or valley) function of the particle size for large (or small) self-propulsion speed. Particle softening (large shape parameter) facilitates the rectification of the particle for small particle, while it blocks the rectification for large particle. (ii) For the case of passive deformable particle, periodic oscillation of the particle size can also break thermodynamical equilibrium. There exists an optimal oscillating frequency at which the average velocity takes its maximal value. For low oscillating frequency, the average velocity is a peak function of the oscillating amplitude, while for high oscillating frequency the average velocity increases monotonically with the oscillating amplitude. Our results may contribute to the understanding of the transport behaviors of soft, deformable matter in confined structures.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3