Correlations and forces in sheared fluids with or without quenching

Author:

Rohwer Christian MORCID,Maciołek AnnaORCID,Dietrich S,Krüger Matthias

Abstract

Abstract Spatial correlations play an important role in characterizing material properties related to non-local effects. Inter alia, they can give rise to fluctuation-induced forces. Equilibrium correlations in fluids provide an extensively studied paradigmatic case, in which their range is typically bounded by the correlation length. Out of equilibrium, conservation laws have been found to extend correlations beyond this length, leading, instead, to algebraic decays. In this context, here we present a systematic study of the correlations and forces in fluids driven out of equilibrium simultaneously by quenching and shearing, both for non-conserved as well as for conserved Langevin-type dynamics. We identify which aspects of the correlations are due to shear, due to quenching, and due to simultaneously applying both, and how these properties depend on the correlation length of the system and its compressibility. Both shearing and quenching lead to long-ranged correlations, which, however, differ in their nature as well as in their prefactors, and which are mixed up by applying both perturbations. These correlations are employed to compute non-equilibrium fluctuation-induced forces in the presence of shear, with or without quenching, thereby generalizing the framework set out by Dean and Gopinathan. These forces can be stronger or weaker compared to their counterparts in unsheared systems. In general, they do not point along the axis connecting the centers of the small inclusions considered to be embedded in the fluctuating medium. Since quenches or shearing appear to be realizable in a variety of systems with conserved particle number, including active matter, we expect these findings to be relevant for experimental investigations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Critical surface adsorption of confined binary liquids with locally conserved mass and composition;Molecular Physics;2024-08-20

2. Valorization of Lignocellulosic and Microalgae Biomass;Biotechnological Applications of Biomass;2021-08-18

3. The role of dimensionality and geometry in quench-induced nonequilibrium forces;Journal of Physics: Condensed Matter;2021-07-15

4. Fluctuations of the critical Casimir force;Physical Review E;2021-06-14

5. Dynamics and steady states of a tracer particle in a confined critical fluid;Journal of Statistical Mechanics: Theory and Experiment;2021-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3