Engineering passive swimmers by shaking liquids

Author:

Laumann M,Förtsch A,Kanso EORCID,Zimmermann W

Abstract

Abstract The locomotion and design of microswimmers are topical issues of current fundamental and applied research. In addition to numerous living and artificial active microswimmers, a passive microswimmer was identified only recently: a soft, Λ-shaped, non-buoyant particle propagates in a shaken liquid of zero-mean velocity (Jo et al 2016 Phys. Rev. E 94 063116). We show that this novel passive locomotion mechanism works for realistic non-buoyant, asymmetric Janus microcapsules as well. According to our analytical approximation, this locomotion requires a symmetry breaking caused by different Stokes drags of soft particles during the two half periods of the oscillatory liquid motion. It is the intrinsic anisotropy of Janus capsules and Λ-shaped particles that break this symmetry for sinusoidal liquid motion. Further, we show that this passive locomotion mechanism also works for the wider class of symmetric soft particles, e.g. capsules, by breaking the symmetry via an appropriate liquid shaking. The swimming direction can be uniquely selected by a suitable choice of the liquid motion. Numerical studies, including lattice Boltzmann simulations, also show that this locomotion can outweigh gravity, i.e. non-buoyant particles may be either elevated in shaken liquids or concentrated at the bottom of a container. This novel propulsion mechanism is relevant to many applications, including the sorting of soft particles like healthy and malignant (cancer) cells, which serves medical purposes, or the use of non-buoyant soft particles as directed microswimmers.

Funder

French German University

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3