Abstract
Abstract
We present a technique based on high resolution imaging to measure the absolute temperature and the heating rate of a single ion trapped at the focus of a deep parabolic mirror. We collect the fluorescence light scattered by the ion during laser cooling and image it onto a camera. Accounting for the size of the point-spread function and the magnification of the imaging system, we determine the spatial extent of the ion, from which we infer the mean phonon occupation number in the trap. Repeating such measurements and varying the power or the detuning of the cooling laser, we determine the heating rate induced by any kind of effect other than photon scattering. In contrast to other established schemes for measuring the heating rate, the ion is always maintained in a state of thermal equilibrium at temperatures close to the Doppler limit.
Funder
FP7: European Research Council
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献